203 research outputs found

    Random model trees: an effective and scalable regression method

    Get PDF
    We present and investigate ensembles of randomized model trees as a novel regression method. Such ensembles combine the scalability of tree-based methods with predictive performance rivaling the state of the art in numeric prediction. An extensive empirical investigation shows that Random Model Trees produce predictive performance which is competitive with state-of-the-art methods like Gaussian Processes Regression or Additive Groves of Regression Trees. The training and optimization of Random Model Trees scales better than Gaussian Processes Regression to larger datasets, and enjoys a constant advantage over Additive Groves of the order of one to two orders of magnitude

    A semi-supervised spam mail detector

    Get PDF
    This document describes a novel semi-supervised approach to spam classification, which was successful at the ECML/PKDD 2006 spam classification challenge. A local learning method based on lazy projections was successfully combined with a variant of a standard semi-supervised learning algorithm

    Bagging ensemble selection

    Get PDF
    Ensemble selection has recently appeared as a popular ensemble learning method, not only because its implementation is fairly straightforward, but also due to its excellent predictive performance on practical problems. The method has been highlighted in winning solutions of many data mining competitions, such as the Netix competition, the KDD Cup 2009 and 2010, the UCSD FICO contest 2010, and a number of data mining competitions on the Kaggle platform. In this paper we present a novel variant: bagging ensemble selection. Three variations of the proposed algorithm are compared to the original ensemble selection algorithm and other ensemble algorithms. Experiments with ten real world problems from diverse domains demonstrate the benefit of the bagging ensemble selection algorithm

    Random Relational Rules

    Get PDF
    Exhaustive search in relational learning is generally infeasible, therefore some form of heuristic search is usually employed, such as in FOIL[1]. On the other hand, so-called stochastic discrimination provides a framework for combining arbitrary numbers of weak classifiers (in this case randomly generated relational rules) in a way where accuracy improves with additional rules, even after maximal accuracy on the training data has been reached. [2] The weak classifiers must have a slightly higher probability of covering instances of their target class than of other classes. As the rules are also independent and identically distributed, the Central Limit theorem applies and as the number of weak classifiers/rules grows, coverages for different classes resemble well-separated normal distributions. Stochastic discrimination is closely related to other ensemble methods like Bagging, Boosting, or Random forests, all of which have been tried in relational learning [3, 4, 5]

    Pairwise meta-rules for better meta-learning-based algorithm ranking

    Get PDF
    In this paper, we present a novel meta-feature generation method in the context of meta-learning, which is based on rules that compare the performance of individual base learners in a one-against-one manner. In addition to these new meta-features, we also introduce a new meta-learner called Approximate Ranking Tree Forests (ART Forests) that performs very competitively when compared with several state-of-the-art meta-learners. Our experimental results are based on a large collection of datasets and show that the proposed new techniques can improve the overall performance of meta-learning for algorithm ranking significantly. A key point in our approach is that each performance figure of any base learner for any specific dataset is generated by optimising the parameters of the base learner separately for each dataset

    Hierarchical meta-rules for scalable meta-learning

    Get PDF
    The Pairwise Meta-Rules (PMR) method proposed in [18] has been shown to improve the predictive performances of several metalearning algorithms for the algorithm ranking problem. Given m target objects (e.g., algorithms), the training complexity of the PMR method with respect to m is quadratic: (formula presented). This is usually not a problem when m is moderate, such as when ranking 20 different learning algorithms. However, for problems with a much larger m, such as the meta-learning-based parameter ranking problem, where m can be 100+, the PMR method is less efficient. In this paper, we propose a novel method named Hierarchical Meta-Rules (HMR), which is based on the theory of orthogonal contrasts. The proposed HMR method has a linear training complexity with respect to m, providing a way of dealing with a large number of objects that the PMR method cannot handle efficiently. Our experimental results demonstrate the benefit of the new method in the context of meta-learning

    Towards a framework for designing full model selection and optimization systems

    Get PDF
    People from a variety of industrial domains are beginning to realise that appropriate use of machine learning techniques for their data mining projects could bring great benefits. End-users now have to face the new problem of how to choose a combination of data processing tools and algorithms for a given dataset. This problem is usually termed the Full Model Selection (FMS) problem. Extended from our previous work [10], in this paper, we introduce a framework for designing FMS algorithms. Under this framework, we propose a novel algorithm combining both genetic algorithms (GA) and particle swarm optimization (PSO) named GPS (which stands for GA-PSO-FMS), in which a GA is used for searching the optimal structure for a data mining solution, and PSO is used for searching optimal parameters for a particular structure instance. Given a classification dataset, GPS outputs a FMS solution as a directed acyclic graph consisting of diverse data mining operators that are available to the problem. Experimental results demonstrate the benefit of the algorithm. We also present, with detailed analysis, two model-tree-based variants for speeding up the GPS algorithm

    Millions of random rules

    Get PDF
    In this paper we report on work in progress based on the induction of vast numbers of almost random rules. This work tries to combine and explore ideas from both Random Forests as well as Stochastic Discrimination. We describe a fast algorithm for generating almost random rules and study its performance. Rules are generated in such a way that all training examples are covered roughly by the same number of rules each. Rules themselves usually have a clear majority class among the examples they cover, but they are not limited in terms of either minimal coverage, nor minimal purity. A preliminary experimental evaluation indicates really promising results for both predictive accuracy as well as speed of induction, but at the expense of both large memory consumption as well as slow prediction. Finally, we discuss various directions for our future research
    corecore